משולש
הרחבות או שכתובים לערך זה התבצעו בעבר באתרים שונים. סקירת השינויים.
בגאומטריה מקובלות שתי דרכים להגדרתו של משולש:
- על פי מושגים יסודיים: "שלוש נקודות שאינן על קו ישר אחד והקטעים הם משולש".[1]
- כמקרה פרטי של הגדרה כללית יותר: משולש הוא מצולע בעל שלוש צלעות.
במשולש יש שלוש זוויות ושלושה קודקודים.
תכונות המשולש[edit | edit source]

נתחיל בבניית עזר. נצייר ישר מקביל לבסיס המשולש, שחותך את המשולש בקודקוד של . מכיוון ש- יוצרים זווית שטוחה אזי . כעת, בגלל שצלעות המשולש הצדדיות חותכות שני ישרים מקבילים מתקיימים השוויונות הבאים בין הזוויות: . נציב זאת בשוויון לעיל ונקבל: , כלומר: סכום הזוויות במשולש שווה 180 מעלות. מ.ש.ל.
- סכום כל הזוויות הפנימיות במשולש הוא 180 מעלות.[2]
- מול הזווית הגדולה במשולש נמצאת הצלע הגדולה בו, ומול הזווית הקטנה במשולש נמצאת הצלע הקטנה בו. כימות של כלל זה ניתן למצוא במשפט הסינוסים.
- המשפט ההפוך: מול הצלע הגדולה במשולש נמצאת הזווית הגדולה בו, ומול הצלע הקטנה במשולש נמצאת הזווית הקטנה בו.
- סכום אורכיהן של שתי צלעות במשולש גדול מאורך הצלע השלישית (ראו גם: אי-שוויון המשולש). זוהי המגבלה היחידה על אורכי צלעות המשולש. כלומר בהינתן שלשה של מספרים חיוביים המקיימים את אי-שוויון המשולש, קיים משולש (יחיד עד כדי חפיפה) שהמספרים הם אורכי צלעותיו.
- כל זווית חיצונית למשולש שווה לסכום שתי הזוויות שאינן צמודות לה.
- משולש הוא תמיד קמור.
קווים ונקודות מיוחדים במשולש[edit | edit source]
הצלע שאינה עוברת דרך קודקוד A נקראת צלע נגדית ל-A, או הצלע שמול A.
קטעים וישרים מיוחדים[edit | edit source]
- הקטע המחבר קודקוד של המשולש עם הצלע שממולו וחוצה את הזווית שבקודקוד לשני חלקים שווים קרוי חוצה זווית.
- הקטע המחבר קודקוד של המשולש עם אמצע הצלע שמולו קרוי תיכון.
- הקו היוצא מאמצע הצלע ומאונך לה, נקרא אנך אמצעי.
- הקטע היוצא מקודקוד של המשולש ומאונך לצלע שממולו קרוי גובה.
- הקטע המחבר אמצעי שתי צלעות קרוי קטע אמצעים. הוא מקביל לצלע השלישית, ושווה באורכו למחציתה.
במשולש שווה-שוקיים, התיכון לבסיס, הגובה לבסיס, האנך האמצעי לבסיס וחוצה זווית הראש מתלכדים לקטע אחד.
נקודות מרכזיות[edit | edit source]
לקטעים אלה, ובעיקר לשלושת הראשונים, יש תפקיד מרכזי בחקירת תכונות המשולש, בעיקר דרך הנקודות שהם מגדירים:
- שלושת חוצי הזוויות במשולש נפגשים בנקודה אחת. נקודה זו מצויה במרחק שווה משלוש הצלעות, ולכן היא מרכז המעגל החסום.
- שלושת האנכים האמצעיים במשולש נפגשים בנקודה אחת. נקודה זו מצויה במרחק שווה משלושת הקודקודים, ולכן היא מרכז המעגל החוסם.
- שלושת התיכונים במשולש נפגשים בנקודה אחת, המצויה בשני שלישים הדרך מן הקודקוד לצלע, לאורך כל אחד מן התיכונים. נקודה זאת היא מרכז הכובד של המשולש.
- שלושת הגבהים במשולש נפגשים בנקודה אחת.
בשנת 1765 הוכיח לאונרד אוילר שמפגש האנכים האמצעיים (O), מפגש התיכונים (M) ומפגש הגבהים (H) נמצאים על ישר אחד, הקרוי ישר אוילר של המשולש, ומסודרים באופן ש-M נמצאת בשני שלישים הדרך מ-H ל-O.
קטע המחבר קודקוד של המשולש לנקודה על הצלע הנגדית נקרא צ'ביאן (דוגמאות: חוצה הזווית, הגובה והתיכון). משפט צ'בה מספק תנאים לכך ששלושה צ'ביאנים ייפגשו בנקודה אחת.
מעגל תשע הנקודות[edit | edit source]
ערך מורחב – מעגל תשע הנקודות
באותה שנה גילה אוילר גם שתשע נקודות מיוחדות במשולש מצויות כולן על מעגל אחד: אמצעי שלוש הצלעות, הנקודות מהן עולים הגבהים, ואמצעי הקטעים המחברים את הקודקודים עם מפגש הגבהים. את המעגל גילה מחדש קרל וילהלם פיירבך (Karl Wilhelm Feuerbach (1800-1834) ב-1822, והוא קרוי "מעגל תשע הנקודות" או מעגל פיירבך.
חפיפת משולשים[edit | edit source]
ערך מורחב – חפיפת משולשים
משולשים חופפים הם זוג משולשים שניתן להזיז, לסובב או לשקף אותם כך שהם יתלכדו זה עם זה, כלומר שלוש הצלעות שלהם ושלוש הזוויות שלהם שוות בהתאמה. אינטואיטיבית, שני משולשים חופפים הם בעצם שני עותקים שונים של אותו משולש.
היכולת לזהות משולשים חופפים היא כלי בסיסי בגאומטריה האוקלידית, כיוון שמשולשים חופפים הם בעלי תכונות זהות. כך, שטח שני משולשים חופפים הוא שווה, אורכי האנכים שווים, וכן גם רדיוסי המעגל החסום והחוסם, וכו'.
משולשים חופפים הם מקרה פרטי של דמיון משולשים (ראו להלן).
דמיון משולשים[edit | edit source]
ערך מורחב – דמיון משולשים
משולשים דומים הם שני משולשים המקיימים את התנאים הבאים:
- שלוש הזוויות של שני המשולשים שוות בהתאמה.
- היחס בין הצלעות המתאימות של שני המשולשים שווה עבור שלושת זוגות הצלעות.
די בכך שהמשולש מקיים את אחד התנאים, משום שקיום אחד התנאים גורר את קיום התנאי האחר.
אינטואיטיבית, במשולשים דומים משולש אחד הוא בעצם הגדלה של המשולש השני, הגדלה שבה כל הפרופורציות של המשולש המקורי נשמרות.
משולשים חופפים הם גם משולשים דומים, אך משולשים דומים אינם בהכרח חופפים.
מדידת גדלים במשולש[edit | edit source]
אם במשולש, אורכי הצלעות הם a, b ו-c, אז:
- אורך הגובה לצלע c הוא
- אורך התיכון לצלע c הוא
- אורך חוצה הזווית שמול הצלע c הוא
שטח המשולש[edit | edit source]
ישנן כמה נוסחאות לחישוב שטח המשולש, שהידועה בהן משתמשת באורך b של אחת הצלעות, ובאורך h של הגובה היורד אל אותה צלע: (האיור המצורף מוכיח נוסחה זו).
נוסחת הרון משמשת לחישוב שטח המשולש לפי אורכי שלוש צלעותיו.
פירוט נוסחאות לחישוב שטח המשולש:
כאשר הוא רדיוס המעגל החסום במשולש ו- הוא רדיוס המעגל החוסם של המשולש, ו- הוא מחצית היקף המשולש ()
משולשים מיוחדים[edit | edit source]
משולש ישר-זווית[edit | edit source]
ערך מורחב – משולש ישר-זווית
משולש שאחת מזוויותיו שווה ל-90° נקרא משולש ישר-זווית. במשולש זה, הצלע שמול הזווית בת ה-90° נקראת יתר ואילו שתי הצלעות האחרות נקראות ניצבים.
- משפט פיתגורס קובע את הקשר בין אורכי הצלעות במשולש ישר-זווית: סכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר-זווית, שווה לשטח הריבוע הבנוי על היתר (ולהפך - משולש בעל תכונה זו הוא ישר-זווית).
- התיכון ליתר במשולש ישר-זווית שווה למחצית היתר (ולהפך - משולש בעל תכונה זו הוא ישר-זווית).
- הגובה ליתר במשולש ישר-זווית מחלק אותו לשני משולשים הדומים זה לזה ולמשולש המקורי. מכאן נובע משפט אוקלידס - אורך הניצב הוא הממוצע הגאומטרי של היתר ושל היטלו של הניצב על היתר.
- הגובה ליתר במשולש ישר-זווית הוא הממוצע הגאומטרי של היטלי הניצבים על היתר (ולהפך - משולש בעל תכונה זו הוא ישר-זווית)
- במשולש ישר-זווית שאחת מזוויותיו שווה ל30°, הניצב שמולה שווה לחצי היתר (ולהפך - במשולש ישר-זווית שבו אחד הניצבים שווה למחצית היתר, הזווית שמול ניצב זה היא בת 30 מעלות).
- במשולש ישר-זווית היתר הוא הצלע הגדולה ביותר.
משולש שווה-שוקיים[edit | edit source]
ערך מורחב – משולש שווה-שוקיים
משולש שווה-שוקיים הוא משולש ששתיים מצלעותיו שוות זו לזו. הצלעות השוות נקראות שוקיים, והצלע השלישית נקראת בסיס.
במשולש שווה-שוקיים זוויות הבסיס שוות, ולהפך - משולש ששתיים מזוויותיו שוות הוא שווה-שוקיים. במשולש שווה-שוקיים, חוצה הזווית של זווית הראש, התיכון לבסיס והגובה לבסיס מתלכדים, ולהפך - משולש בו שניים מהם מתלכדים הוא שווה-שוקיים. כמו כן, שני הגבהים לשוקיים שווים זה לזה, וכן התיכונים לשוקיים וחוצי זוויות הבסיס, ולהפך.
משולש שווה-צלעות[edit | edit source]
ערך מורחב – משולש שווה-צלעות
משולש שווה-צלעות הוא משולש שמהווה מצולע משוכלל - מצולע שכל צלעותיו שוות וכל זוויותיו שוות. הזווית הפנימית בכל קודקוד של משולש שווה-צלעות היא בת 60° וזווית הנוצרת עם צלעות משולש שווה-צלעות ומחוץ לו היא בת 300°.
כל משולש שווה-צלעות הוא גם שווה-שוקיים (בשלוש דרכים שונות).
במשולש שווה-צלעות, חוצה הזווית, התיכון, הגובה והאנך האמצעי מתלכדים לקו אחד.
באמצעות משפט פיתגורס ניתן להוכיח כי
- משולש שווה-צלעות שאורך צלעו a, שטחו הוא
- משולש שווה-צלעות שאורך גובהו h, שטחו הוא
- משולש שווה-צלעות שאורך צלעו a, גובהו הוא
"משולש הזהב"[edit | edit source]
בשם "משולש זהב" נקרא משולש שווה-שוקיים בעל זווית בסיס של 72 או 36 מעלות, מכיוון שבמשולשים אלה מתקיימת התכונה הבאה: היחס בין השוק לבסיס או בין הבסיס לשוק הוא יחס הזהב.
בישראל ניתן הכינוי "משולש הזהב" גם למשולש ישר-זווית שזוויותיו הן בנות 90, 60 ו-30 מעלות; במשולש זה, היתר גדול פי 2 מהניצב שנמצא מול הזווית השווה ל 30°, והניצב הגדול (שנמצא מול הזווית השווה ל 60°), גדול פי מהניצב הקטן, כך שאפשר לתאר את היחס בין הצלעות (מהגדולה לקטנה) בנוסף מוזכר בישראל "משולש כסף", שהוא משולש שווה-שוקיים בעל זווית בסיס של 45 מעלות. משולש זה הוא ישר-זווית ושווה-שוקיים בו זמנית. אורך היתר בו גדול פי שורש 2 מכל אחד מהניצבים.
מרחב ההשתנות של משולשים[edit | edit source]

ניתן לחקור את אוסף כל המשולשים עד כדי דמיון בכלים של גאומטריה אלגברית. בהקשר זה הוא נקרא מרחב ההישתנות (variety) של משולשים. אוסף זה הוא באופן טבעי מנה של יריעה אלגברית ממשית תחת פעולה של חבורה אלגברית ממשית. מנה כזאת היא באופן טבעי סטק אלגברי (או גם גרופויד בקטגורית הירעות האלגבריות). מרחב הישתנות זה הוא דוגמה קלאסית פשוטה לסטק אלגברי.
גופים שפאותיהם כוללות משולשים[edit | edit source]
שלושה מחמשת הגופים האפלטוניים הם גופים שפאותיהם כוללות משולשים: הארבעון (טטראדר), שכל ארבע פאותיו הן משולשים, התמניון (אוקטאדר), שכל שמונה פאותיו הן משולשים, והעשרימון (איקוסהדרון), שכל עשרים פאותיו הן משולשים. בנוסף, במנסרה משולשת שני הבסיסים הם משולשים.
המשולש בגאומטריות לא אוקלידיות[edit | edit source]
גאומטריות לא אוקלידיות הן גאומטריות שבהן אקסיומת המקבילים מוחלפת באקסיומה אחרת. אחד המאפיינים הבולטים המבדילים בין הגאומטריה האוקלידית לגאומטריות הלא אוקלידיות הוא סכום הזוויות במשולש (והתכונות הנגזרות ממנו).
בגאומטריה אוקלידית, סכום הזוויות במשולש הוא 180 מעלות.
בגאומטריה היפרבולית מוחלפת אקסיומת המקבילים באקסיומה: דרך כל נקודה שמחוץ לישר עוברים לפחות שני ישרים מקבילים לישר זה. בגאומטריה זו סכום הזוויות במשולש תמיד קטן מ-180 מעלות.
בגאומטריה פרויקטיבית ובגאומטריה ספירית מוחלפת אקסיומת המקבילים באקסיומה: כל שני ישרים במישור נפגשים בנקודה. בגאומטריות אלו סכום הזוויות במשולש תמיד גדול מ-180 מעלות.
בגאומטריה אוקלידית, שטח המשולש אינו תלוי בסכום זוויותיו. בגאומטריה ההיפרבולית ובגאומטריה הספירית שטח המשולש יחסי לפער שבין סכום זוויותיו ל-180 מעלות.
קישורים חיצוניים[edit | edit source]
- טריגוקליק - אתר עזר בנושא משולשים
- הסבר על משולשים - מתוך מילון הגאומטריה של משרד החינוך
הערות שוליים[edit | edit source]
- ^ דיבשה אמירה, ביסוס אכסיומתי ליסודות הגאומטריה, עם עובד ודביר, 1962, עמ' 35
- ^ תכונה זו, כמו אחדות מהתכונות האחרות המוזכרות בערך זה, מתקיימת רק בגאומטריה האוקלידית (שבה מתמקד ערך זה) בגאומטריות לא אוקלידיות סכום הזוויות שונה - גדול מ-180 מעלות או קטן מ-180 מעלות (ראו הרחבה בסעיף המשולש בגאומטריות לא אוקלידיות להלן)
מצולעים ופאונים | ||
---|---|---|
מושגים | מצולע • פאון • קודקוד • צלע • מקצוע • פאה • זווית חיצונית • אלכסון | |
מצולעים | ||
לפי מספר צלעות | משולש • מרובע • מחומש • משושה • משובע • מתומן | |
משולשים | משולש ישר-זווית • משולש שווה-שוקיים • משולש שווה-צלעות | |
מרובעים | מקבילית • טרפז • טרפז שווה-שוקיים • מרובע ציקלי • דלתון • דלתון ריצוף • מעוין • מלבן • ריבוע | |
כוכבים | פנטגרם • מגן דוד • אניאגרם | |
תכונות | מצולע משוכלל • מצולע שווה-צלעות • מצולע קמור • כוכב | |
פאונים | ||
פאונים משוכללים | ארבעון • קובייה • תמניון • תריסרון • עשרימון | |
פאונים ארכימדיים | ארבעון קטום • קובוקטהדרון • קובייה קטומה • תמניון קטום • רומביקובוקטהדרון • קובוקטהדרון קטום • קובייה מסותתת • איקוסידודקהדרון • דודקהדרון קטום • איקוסהדרון קטום • רומביקוסידודקהדרון • איקוסידודקהדרון קטום • דודקהדרון מסותת | |
פאונים אחרים | פירמידה • מנסרה • אנטי-מנסרה • מקבילון • מעוינון • תיבה • איקוסיטטרהדרון | |
תכונות | פאון משוכלל • פאון משוכלל למחצה • פאון ארכימדי | |
הכללות | ||
הכללות | סימפלקס • היפרקובייה • טסרקט |
ערך זה מוגש באדיבות ויקיפדיה העברית, תחת רשיון ייחוס שיתוף זהה (CC BY-SA 3.0).
(הדף המקורי, רשימת התורמים)
הערך בוויקיפדיה גדול מערך זה ב +2481 תווים
לעדכון מוויקיפדיה, לחץ כאן.