מספר שלם
מספר שלם הוא מספר הנכתב ללא מרכיב חלקי. לדוגמה, 21, 4, ו 2048- הם מספרים שלמים, אך 9.75, 5.5 ו-2√ אינם מספרים שלמים. סט המספרים השלמים מורכב מכל המספרים הטבעיים (1, 2, 3, ...), אפס (0) והמספרים הנגדיים להם - המספרים השלמים השליליים - (1-, 2-, 3-, ...).
נהוג לסמן קבוצה זו באות Z בגופן בלקבורד-בולד ( . מהמילה הגרמנית Zahlen [נהגית ˈtsaːlən] - "מספרים". ℤ מסומן ביוניקוד U+2124) ומספר שלם בודד כלשהו באותיות אנגליות קטנות כגון k, n, m.
באלגברה, המספרים השלמים עם פעולת החיבור הם חבורה. עם פעולת הכפל הם אינם חבורה, משום שרק המספרים השלמים 1 ו 1- הפיכים. המספרים השלמים עם פעולות החיבור והכפל הם חוג הקרוי חוג המספרים השלמים. מבחינות רבות, המושג חוג הוא הפשטה אלגברה[דרושה הבהרה] של מספרים שלמים.
מספר שלם a הוא מחלק (או גורם) של מספר שלם b אם אפשר לכתוב את b כמכפלה של a במספר שלם אחר. במקרה כזה, השארית בחלוקה של b ב-a היא 0. דוגמה: 5 הוא מחלק של המספר 35, אך לא של המספר 33.
נהוג לסמן את התכונה כך: a|b פירושו "a מחלק את b."
קישורים חיצוניים[edit | edit source]
- מספר שלם, באתר אנציקלופדיה למתמטיקה (באנגלית)
מערכות מספרים | ||
---|---|---|
מספרים | המספרים הטבעיים (מערכת פאנו) • חוג המספרים השלמים (מספרים חיוביים ושליליים, מספר שלם) • שדה המספרים הרציונליים (מספר רציונלי, מספר אי-רציונלי) • שדה המספרים הממשיים (הישר הממשי, מספר ממשי) • שדה המספרים המרוכבים (המישור המרוכב, מספר מרוכב, מספר מדומה) | |
הרחבות של חוג המספרים השלמים | חוג השלמים של גאוס • חוג השלמים האלגבריים • חוג השלמים של אייזנשטיין | |
הרחבות של שדה המספרים הרציונליים | שדה מספרים • שדה המספרים הניתנים לבנייה • שדה המספרים האלגבריים (מספר אלגברי, מספר טרנסצנדנטי) • שדה המספרים ה-p-אדיים (מספר p-אדי) • שדה ציקלוטומי | |
מעבר למרוכבים | אלגברת הקווטרניונים של המילטון • אוקטוניונים • אלגברות קיילי-דיקסון |
ערך זה מוגש באדיבות ויקיפדיה העברית, תחת רשיון ייחוס שיתוף זהה (CC BY-SA 3.0).
(הדף המקורי, רשימת התורמים)
הערך בוויקיפדיה גדול מערך זה ב +36242 תווים
לעדכון מוויקיפדיה, לחץ כאן.