הרכבת פונקציות

From האנציקלופדיה היהודית
Jump to navigation Jump to search
, הרכבה של על

במתמטיקה, ההרכבה של פונקציות היא פונקציה המתקבלת מהפעלת פונקציות בזו אחר זו.

ובאופן פורמלי: אם פונקציה מ- ל- ו- פונקציה מ- ל-, אז ההרכבה (בסדר זה) היא הפונקציה מ- ל- המוגדרת לפי . ההרכבה מוגדרת בתנאי שהתמונה של הפונקציה הראשונה () מוכלת או שווה לתחום של הפונקציה השנייה ().

תכונות[edit | edit source]

התכונה החשובה ביותר של הרכבת פונקציות היא האסוציאטיביות של הפעולה: אם אפשר להרכיב את על ואת על , אז . בזכות תכונה זו, והעובדה שלמערכות של פונקציות יש תפקיד מרכזי כל-כך במתמטיקה, מרבית הפעולות במבנים אלגבריים, ובראשם החבורות, הם אסוציאטיביים. לדוגמה, אוסף כל הפונקציות מקבוצה X לעצמה הוא מונויד. פונקציה שהיא חד-חד-ערכית ועל היא הפיכה: קיימת כך שההרכבות ו- הן פונקציית הזהות על .

הרכבה של פונקציות ממשיות[edit | edit source]

הרוב המכריע של הפונקציות המופיעות בחישובים מדעיים מתקבלות כהרכבות של פונקציות יסודיות; הרכבות כאלה נקראות פונקציות אלמנטריות. למשל, הפונקציה היא ההרכבה כאשר ו- .

גבול של הרכבת פונקציות ממשיות: אם ו- פונקציות שעבורן וכן גם קיים הגבול (עבור כלשהם), אז הגבול של הרכבת הפונקציות קיים ושווה ל-. אם מתקיים לפחות אחד משני התנאים הבאים, אז גם מתקיים: g רציפה ב- (כלומר ) או שקיימת סביבה מנוקבת של שבה . שני תנאים אלו מספיקים אך לא הכרחיים.

כלל השרשרת קובע את הנגזרת של הרכבת פונקציות, באופן התלוי בנגזרות של המרכיבים.

ערך זה מוגש באדיבות ויקיפדיה העברית. (הדף המקורי, רשימת התורמים)
הערך בוויקיפדיה גדול מערך זה ב +577 תווים

לעדכון מוויקיפדיה, לחץ כאן.

NivdakVeushar.png